

APPLICATION DATA Nucleic acids HPLC/IEX/SEC

Contents

Technical Data

High resolution analysis of Oligonucleotides on reversed phase chromatographyOptimization of oligonucleotide setarations on ion-exchange chromatography

Analytical Data

P. 5
P. 6
P. 7
P. 8
P. 8
P. 9-11
P. 11
P. 11, 12
P. 12-14
P. 14, 15
P. 15
P. 16
P. 16
P. 16

HPLC DATA SHEET

High resolution analysis of Oligonucleotides on reversed phase chromatography

F121018AE-2

Oligonucleotides analysis on reversed-phase ion-pair chromatography (RP-IPC)

Comparison of retention and separation under various mobile phase conditions

Applicability to LC/MS analysis

Impact of concentration and types of ion-paring reagent on resolution and signal intensity

LC/MS analysis of miRNA

1

Column	: Hydrosphere C18 (3 μm, 12 nm), 50 X 2.0 mml.D.
Eluent	: A) 10 mM triethylamine-acetic acid (pH 6.0)
	B) 10 mM triethylamine-acetic acid (pH 6.0)/acetonitrile (80/20)
	50-65%B (0-20 min)
	A) 10 mM di-n-butylamine-acetic acid (pH 6.0)
	B) 10 mM di-n-butylamine-acetic acid (pH 6.0)/acetonitrile (50/50)
	30-75%B (0-20 min)
	A) 5 mM di-n-butylamine-acetic acid (pH 6.0)
	B) 5 mM di-n-butylamine-acetic acid (pH 6.0)/acetonitrile (50/50)
	30-75%B (0-20 min)
Flow rate	: 0.2 mL/min
Temperature	e : 35°C
Detection	: ESI-negative mode
Injection	: 5 μL (5 nmol/mL)

- TEA and DBA are both volatile ion-pairing reagents, and applicable to LC/MS analysis. When comparing the separation characteristics of d(pT)₂₋₂₀ with those reagents under the same buffer concentration, signal intensity and retention with DBA is superior to that with TEA.
- At 5 mM dibutylamine-acetic acid buffer (DBAA) condition, higher signal intensity of oligonucleotides is achieved even though retention and resolution is slightly decreased.

Column Eluent	: YMC-Triart C18 (3 μm, 12 nm), 150 X 2.0 mml.D. : A) 10 mM di-n-butylamine-acetic acid (pH 7.5) B) 10 mM di-n-butylamine-acetic acid (pH 7.5)/acetonitrile (50/50) 62-72%B (0-20 min)
Flow rate	: 0.2 mL/min
Temperatu	re : 30°C
Detection	: A) UV at 260 nm
	B) ESI-negative mode
Injection	: 4 µL (5 nmol/mL)
System	: LC) Shimadzu Prominence
	MS) Shimadzu LCMS2020

Mixture of miRNA of 21 nt and 22 nt is separated by using 10mM DBAA/acetonitrile as a mobile phase and detected with MS.

High temperature analysis of oligonucleotides with YMC-Triart C18

Effect of mobile phase and column temperature on separation of siRNA duplex

- Separation of siRNA duplex under different mobile phase conditions at various temperatures with YMC-Triart C18 is shown.
- Under both condition A and condition B, peak shape and resolution between immediate peaks is improved by increasing the column temperature.
- Due to the improvement of dispersion and distribution velocity when increasing column temperature, bio-macro molecules such as RNA and DNA generally exhibit sharper peak shape and improved resolution.
- Under condition B at 40 °C or higher temperature, two peaks of single-stranded RNA that is generated by denaturation of siRNA duplex are observed. This HPLC technique that is utilizing high temperature to generate single-stranded RNA is called "Denaturing HPLC", and widely used in the field of gene mutation analysis.
- As shown above, denaturation of duplex DNA or RNA is also influenced by ionic strength (type and concentration), pH and polarity as well as temperature. Those analysis conditions (temperature and mobile phase) are recommended to be optimized depending on characteristics of target analyte and purpose of analysis.

Durability at pH 6.0 (DBAA buffer) and 65°C

Test condition	Column Eluent Flow rate	: 1.9 μm or 2.0 μm, 12 nm, 50 X 2.0 mml.D. : A) 10 mM di-n-butylamine-acetic acid (pH 6.0) B) methanol 30-50%B (0-20 min) : 0.4 mL/min
	Detection	: UV at 269 nm
	Temperature	e: 65⁰C
	Sample	: Oligodeoxythymidylic acid, [d(T) ₂₋₂₀]
	Injection	: 1 μL (5 nmol/mL)
	System	: Agilent 1290

- Combination of neutral buffer containing amino ion-paring reagent and high temperature is useful for high-throughput analysis of oligonucleotides or denaturing HPLC. However, conventional silica-based reverse-phase column can hardly used with such condition due to the poor durability.
- YMC-Triart C18 using inorganic/organic hybrid silica with thorough surface modification offers excellent durability at elevated temperature and pH. YMC-Triart C18 is ideal for oligonucleotides analysis.

HPLC DATA SHEET

Optimization of oligonucleotide separations on ion-exchange chromatography P180316AE

Nucleic acid therapeutics such as antisense, siRNA and aptamers are expected to play an important role as next-generation pharmaceuticals together with antibody drugs. These drugs demand chromatographic purification and analysis that can recognize slight structural differences following synthesis. In this report, we provide useful tips for optimization of ion-exchange chromatography methods for oligonucleotides.

Samples

1	Single-strand DNA	5'-TCATCACACTGAATACCAAT-3' (DNA 20 mer)
2		5'-GTCATCACACTGAATACCAAT-3' (DNA 21 mer)
3	Single-strand RNA	5'-U(M)C(M)A(M)U(M)C(M)A(M)C(M)A(M)C(M)U(M)G(M)A(M)A(M)U(M)A(M) C(M)C(M)A(M)A(M)U(M)-3' (2'-OMe RNA 20 mer)
4		5'-G(M)U(M)C(M)A(M)U(M)C(M)A(M)C(M)A(M)C(M)U(M)G(M)A(M)A(M)U(M) A(M)C(M)C(M)A(M)A(M)U(M)-3' (2'-OMe RNA 21 mer)
5		5'-UCAUCACACUGAAUACCAAU-3' (RNA 20 mer)
6		5'-GUCAUCACACUGAAUACCAAU-3' (RNA 21 mer)
	~	N(M)=2'-OMe RNA
	н О) N ^Д	Ó ÓMe O Ó ÓH O

Reducing carry-over

A) 20 mM Tris-HCI (pH 8.1) B) 20 mM Tris-HCI (pH 8.1) containing 1.0 M NaCI 5-70%B (0-15 min), 74%B (15-18 min), 5%B (18-33 min) Initial : 50 mM NaCI

A) 20 mM Tris-HCI (pH 8.1)
B) 20 mM Tris-HCI (pH 8.1) containing 1.0 M NaCI
40-70%B (0-15 min), 74%B (15-18 min), 40%B (18-33 min)
Initial : 400 mM NaCI

Column	: BioPro IEX QF 5 μm, 100 X 4.6 mm I.D.
Flow rate	: 1.0 mL/min
Temperature	: 25°C
Detection	: UV at 260 nm
Injection	: 2 μL (10 nmol/mL)

Carry-over is observed on gradient with low initial concentration of NaCl. But good separation with virtually no carry-over can be achieved by increasing the initial concentration (e.g. 300-400 mM NaCl).

 \rightarrow It is important to optimize buffer and counter ion for excellent peak shape of oligonucleotides.

Analysis examples with the optimized conditions

Analytical Data

核酸塩基・ヌクレオシド・ヌクレオチド

Nucleic acid bases, nucleosides and nucleotides

C140730A

5

核酸塩基・ヌクレオシド Nucleic acid bases and nucleosides R090205G

Column	: Hydrosphere C18 (5 μm, 12 nm) 150 X 4.6 mml.D.
Eluent	: 20 mM CH ₃ COONH ₄ -CH ₃ COOH (pH 4.1)/methanol (90/10)
Flow rate	: 1.0 mL/min
Temperature	: 30°C
Detection	: UV at 254 nm
Injection	: 5 µL
Sample	: Cytosine (0.01 mg/mL), Cytidine (0.01 mg/mL),
	Uracil (0.005 mg/mL), Uridine (0.01 mg/mL),
	Guanosine (0.01 mg/mL), Adenosine (0.01 mg/mL)

核酸塩基・ヌクレオシド Nucleic acid bases and nucleosides

核酸塩基・ヌクレオシド

Nucleic acid bases and nucleosides

V120501A

核酸塩基

Nucleic acid bases

011070

C140730B

	50 X 5.0 mm.D.
Eluent	: A) 50 mM TEAA* (pH 7.0)
	B) 50 mM TEAA* (pH 7.0)/acetonitrile (80/20)
	0-40%B (0-8 min)
Flow rate	: 0.425 mL/min
Temperature	: 30°C
Detection	: UV at 260 nm
Injection	: 2 μL (50 μg/mL)
*TEAA: triethylamine-a	cetic acid

核酸塩基

Nucleic acid bases

核酸塩基 Nucleic acid bases

Column Eluent Flow rate Temperature Detection Injection

オロチン酸

 Hydrosphere C18 (5 μm, 12 nm) 150 X 4.6 mml.D.
 20 mM H₃PO₄
 1.0 mL/min
 37°C
 UV at 254 nm
 10 μL (0.015-0.1 mg/mL)

ヌクレオシド Nucleosides

C140730C mALI Cytidine 1000 Xanthosine 2'-Deoxyuridine Inosine Guanosine 500 2'-Deoxyinosine 2'-Deoxyguanosine Adenosine 2'-Deoxyadenosine 0 min Ó 2 3 4 5 6 7 : YMC-Triart C18 (3 µm, 12 nm) Column 50 X 3.0 mml.D. Eluent : A) 50 mM TEAA* (pH 7.0) B) 50 mM TEAA* (pH 7.0)/acetonitrile (80/20) 0-40%B (0-8 min) Flow rate : 0.425 mL/min Temperature : 30°C Detection : UV at 260 nm : 2 µL (50 µg/mL) Injection *TEAA: triethylamine-acetic acid

Detection

Injection

Column

Eluent

: UV at 254 nm

: 1 µL (0.1 mg/mL)

ヌクレオチド Nucleotides

マグロ肉中のATPとその関連物質 ATP and its related compounds in Tuna meat

ヌクレオチド Nucleotides

Injection

Sample

: 10 µL

: Poly(A)

*Courtesy of Dr. Y. Baba, Kobe Women's College of Pharmacy

オリゴヌクレオチド, d(T)₂₋₂₀ Oligonucleotides, $d(T)_{2-20}$

F111118A

F060118A

オリゴヌクレオチド d(T)2-20のLC/MS分析

LC/MS analysis of oligonucleotides d(T)₂₋₂₀

オリゴヌクレオチド, d(T)2-20 Oligonucleotides, d(T)₂₋₂₀

mAU

30

20

10

0

Λ

2

Oligodeoxythymidylic acid [d(T)₂₋₂₀] 6 Å 8 10 12 14 16 18 min

F050423A

オリゴヌクレオチド(miRNA)のLC/MS分析 LC/MS analysis of oligonucleotides (miRNA)

オリゴヌクレオチド(siRNA)のLC/MS分析 LC/MS analysis of oligonucleotides (siRNA)

合成オリゴヌクレオチド(一本鎖DNA)

Synthetic oligonucleotides (Single-strand DNA)

P171116C

Column	: BioPro IEX QF (5 µm)
	100 X 4.6 mml.D.
Eluent	: A) 10 mM NaOH
	B) 10 mM NaOH containing 1.0 M NaClO₄
	25-55%B (0-15 min), 100%B (15-20 min)
Flow rate	: 1.0 mL/min
Temperature	: 25°C
Detection	: UV at 260 nm
Injection	: 4 µL (5 nmol/mL)
•	• • •

4. 5'-GUC AUC ACA CUG AAU ACC AAU-3' (21 mer)

Column	: YMC-Triart C18 (1.9 μm, 12 nm)
	50 X 2.1 mml.D.
Eluent	: A) 200 mM HFIP*-8 mM triethylamine
	B) methanol
	10-20%B (0-10 min)
Flow rate	: 0.42 mL/min
Temperature	: 65°C
Detection	: UV at 260 nm
Injection	: 1 μL (2-4 nmol/mL)
* 1,1,1,3,3,3-hexafluoro-2-propanol	

合成オリゴヌクレオチド(一本鎖RNA)

Synthetic oligonucleotides (Single-strand RNA)

P171116E

F180403J

1. 5'-UCAUCACACUGAAUACCAAU-3' (20 mer) 2. 5'-GUCAUCACACUGAAUACCAAU-3' (21 mer)

Column	: BioPro IEX QF (5 μm)
	100 X 4.6 mml.D.
Eluent	: A) 10 mM NaOH
	B) 10 mM NaOH containing 1.0 M NaClO ₄
	25-55%B (0-15 min), 100%B (15-20 min)
Flow rate	: 1.0 mL/min
Temperature	: 25°C
Detection	: UV at 260 nm
Injection	: 4 µL (5 nmol/mL)
	,

1. 5'-TCATCACACTGAATACCAAT-3' (20 mer) 2. 5'-GTCATCACACTGAATACCAAT-3' (21 mer)

合成オリゴヌクレオチド(一本鎖RNA) Synthetic oligonucleotides (Single-strand RNA)

P171116A

1. 5⁻-U(M)C(M)A(M)U(M)C(M)A(M)C(M)A(M)C(M)U(M)G(M)A(M)A(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)-3' (20 mer) 2. 5'-G(M)U(M)C(M)A(M)U(M)C(M)A(M)C(M)A(M)C(M)U(M)G(M)A(M)A(M)U(M)A(M)C(M)C(M)A(M)A(M)U(M)-3' (21 mer) N(M)=2'OMe RNA

Column	: BioPro IEX QF (5 µm)
	100 X 4.6 mml.D.
Eluent	: A) 10 mM NaOH
	B) 10 mM NaOH containing 1.0 M NaClO ₄
	25-55%B (0-15 min), 100%B (15-20 min)
Flow rate	: 1.0 mL/min
Temperature	: 25°C
Detection	: UV at 260 nm
Injection	: 4 μL (5 nmol/mL)
	• • •

合成オリゴヌクレオチドのLC/MS分析

LC/MS analysis of synthetic oligonucleotides

合成オリゴヌクレオチド Synthetic oligonucleotides

5'-CCCGTGTTCCTTGCCACAGAC-3' (21 mer)

F050502A

N080212G

Column	: Hydrosphere C18 (3 µm, 12 nm)
	50 X 4.6 mml.D.
Eluent	: A) 10 mM DBAA* (pH 6.0)
	B) 10 mM DBAA* (pH 6.0)/methanol (20/80)
	55-60%B (0-20 min)
Flow rate	: 1.0 mL/min
Temperature	: 35°C
Detection	: UV at 269 nm
Injection	: 3 µL (10 nmol/mL)
Sample	: primer of DNA sequencing
*di-n-butylamine-acetic acid	

DNAフラグメント **DNA fragments**

Column	: BioPro IEX QF (5 µm)
	100 X 4.6 mml.D.
Eluent	: A) 20 mM Tris-HCI (pH 8.1) containing 0.5 M NaCI
	B) 20 mM Tris-HCI (pH 8.1) containing 1.0 M NaCI
	40-100%B (0-30 min)
Flow rate	: 0.5 mL/min
Temperature	: 25°C
Detection	: UV at 260 nm
Injection	: 20 μL (0.25 mg/mL)
Sample	: 1 kb DNA ladder (75-12,216 bp)

ラムダDNA制限酵素 Hind IIIおよび EcoRI 分解物 Lambda DNA Hind III/EcoRI restriction fragments

Lambda DNA Hind III/ECOR I restriction tragments P081023B

	B) 20 mM Glycine-NaOH (pH10.6) containing 1.0 M NaC
	70-90%B (0-30 min), 100%B (30-35 min),
	0%B (35-65 min), 70%B (65-95 min)
Flow rate	: 0.5 mL/min
Temperature	: 25°C
Detection	: UV at 260 nm
Injection	: 20 μL (0.1 mg/mL)
Sample	: Lambda DNA digested by Hind III and
	EcoR (130-23,130 bp)

プラスミドpBR322の制限酵素HaeIII分解物

Plasmid pBR322 and pBR322 Hae III restriction fragments

P080617A

プラスミドpBR322の制限酵素Hae III分解物

Plasmid pBR322 and pBR322 Hae III restriction fragments

N080610F

プラスミドpBR322の制限酵素Mspl分解物

Plasmid pBR322 and pBR322 Msp I restriction fragments G920109B

1. Plasmid pBR322 cleaved with restriction endonuclease Msp I

YMC America, Inc. www.ymcamerica.com

YMC India Pvt. Ltd. www.ymcindia.com

Worldwide Availability

YMC Switzerland LLC

YMC Taiwan Co., Ltd.

Distributor

www.ymc-schweiz.ch

www.ymctaiwan.com

YMC Europe GmbH www.ymc.de

YMC Korea Co., Ltd. www.ymckorea.com

YMC CO., LTD.

YMC Karasuma-Gojo Bldg., 284 Daigo-cho Karasuma Nishiiru Gojo-dori, Shimogyo-ku Kyoto, 600-8106, Japan TEL:+81-75-342-4515 FAX:+81-75-342-4550 www.ymc.co.jp sales@ymc.co.jp

The above information is as of July, 2018 and is subject to change without notice. ©2018 YMC CO., LTD. All Rights Reserved.

YMC Shanghai Rep. Office www.ymcchina.com

YMC Singapore Tradelinks Pte. Ltd. www.ymc.sg