USP class 管柱分類

USP No Functional group USP Description YMC Product
L01 C18 Octadecyl silane <ODS or C18> chemically bonded to porous silica or ceramic particles – 1.5 to 10 µm in diameter YMC-Triart C18

YMC-Triart C18 ExRS

YMC-Triart Bio C18

Meteoric Core C18

Meteoric Core C18 BIO

Pack Pro C18

Hydrosphere C18

Pack Pro C18 RS

YMC-Pack ODS-A

YMC-Pack ODS-AM

YMC-Pack ODS-AQ

YMC-Pack ODS-AL

J’sphere ODS-H80, ODS-M80, ODS-L80

L03 SIL Porous silica particles – 1.5 to 10 µm in diameter  

YMC-Triart SIL

YMC-Pack SIL, SIL-06

L07 C8 Octyl silane <C8> chemically bonded to porous silica particles – 1.5 to 10 µm in diameter YMC-Triart C8

Meteoric Core C8

YMC-Pack Pro C8

YMC-Pack C8

YMCbasic

L08 NH2 An essentially monomolecular layer of aminopropylsilane <NH2> chemically bonded to totally porous silica gel support – 1.5 to 10 µm in diameter YMC-Pack NH2
L10 CN Nitrile groups <CN> chemically bonded to porous silica particles – 1.5 to 10 µm in diameter YMC-Pack CN
L11 Ph Phenyl groups chemically bonded to porous silica particles – 1.5 to 10 µm in diameter YMC-Triart Phenyl

YMC-Pack Ph

L13 C1 Trimethylsilane <C1> chemically bonded to porous silica particles – 1.5 to 10 µm in diameter YMC-Pack TMS
L20 Diol Dihydroxypropane groups chemically bonded to porous silica particles – 1.5 to 10 µm in diameter YMC-Triart Diol-HILIC

YMC-SEC MAB

YMC-Pack Diol

YMC-Pack Diol-NP

L24 Polyvinyl alcohol Polyvinyl alcohol chemically bonded to porous silica particles – 5 µm in diameter YMC-Pack PVA-Sil
L26 C4 Butyl silane <C4> chemically bonded to porous silica particles – 1.5 to 10 µm in diameter YMC-Triart Bio C4

YMC-Pack Pro C4

YMC-Pack C4

YMC-Pack PROTEIN-RP

L27 SIL Porous silica particles – 30 to 50 µm in diameter YMC-Pack SIL-HG
L33 Diol Packing having the capacity to separate dextrans by molecular size over a range of 4,000 to 500,000 Da. It is spherical, silica-based, and processed to provide pH stability YMC-Pack Diol (SEC)
L40 Cellulose
derivatives
Cellulose tris-3,5-dimethylphenylcarbamate coated porous silica particles, 3 to 20 µm in diameter CHIRAL ART Cellulose-C
L43 PFP Pentafluorophenyl groups chemically bonded to silica particles by a propyl spacer, 1.5 to 10 µm in diameter YMC-Triart PFP
L51 Amylose
derivatives
Amylose tris-3,5-dimethylphenylcarbamate-coated, porous, spherical, silica particles, 3 to 20 µm in diameter CHIRAL ART Amylose-C
L59 Diol Packing for the size exclusion separations of proteins (separation by molecular weight) over the range of 5 to 7000 kDa. It is spherical (1.5 to 10 µm), silica or hybrid packing with a hydrophilic coating YMC-SEC-MAB

YMC-Pack Diol (SEC)

L62 C30 C30 silane bonded phase on a fully porous spherical silica, 3 to 15 µm in diameter YMC Carotenoid
L99 Amylose
derivatives
Amylose tris-(3,5-dimethylphenylcarbamate), immobilized on porous, spherical, silica particles, 3 to 5 µm in diameter CHIRAL ART Amylose-SA
L111 Polyamine Polyamine chemically bonded to porous spherical silica particles, 5 µm in diameter YMC-Pack Polyamine II
L119 Cellulose
derivatives
Cellulose tris-(3,5-dichlorophenylcarbamate), immobilized on porous, spherical, silica particles, 3 to 5 µm in diameter. CHIRAL ART Cellulose-SC

Exhibitaion 展覽資訊

AMERICAS

USA

Show name Dates Location
TIDES 20 May. – 23 May., 2019 San Diego, CA
PREP 2019 7 Jul. -10 Jul., 2019 Baltimore, MD
SFC 2019 29 Sep. -1 Oct., 2019 Philadelphia, PA
2019 EAS 18 Nov. -20 Nov., 2019 Princeton, NJ
PITTCON 2020 1 Mar. – 5 Mar., 2020 Chicago, IL

EUROPE

Belgium

Show name Dates Location
Laborama 2019 14 Mar. – 15 Mar., 2019 Brussels

Austria

Show name Dates Location
LAB Supply 19 Mar., 2019 Vienna

Germany

Show name Dates Location
LAB Supply 3 Apr., 2019 Frankfurt-Hoechst
LAB Supply 15 May., 2019 Leverkusen
LAB Supply 13 Jun., 2019 Berlin
LAB Supply 28 Aug., 2019 Dresden
BioTalk Summit 23 Sep. – 24 Sep., 2019 Berlin
LAB Supply 25 Sep., 2019 Münster
LAB Supply 29 Oct., 2019 Hamburg
4. IUTA AnalytikTag 07 Nov., 2019 Duisburg

Italy

Show name Dates Location
HPLC 2019 16 Jun. – 20 Jun., 2019 Milan

ASIA

Korea

Show name Dates Location
The Pharmaceutical Society of Korea 29 Jan., 2019 Daegu
2019 KOREA LAB 16 Apr. – 19 Apr., 2019 Goyang
The Korean Society for Applied Biological Chemistry 20 Jun. – 22 Jun., 2019 Busan
Korean Chemical Society 16 Oct. – 18 Oct., 2019 Changwon
The Korean Society of Pharmacognosy 28 Nov., 2019 Seoul

India

Show name Dates Location
INDIA LAB EXPO 19 Sep. – 21 Sep., 2019 Hyderabad
CPhI india P-mec 26 Nov. – 28 Nov., 2019 Greater Noida

WEBINAR SERIES

mAbs / Peptide / Oligo / ADC Purification & Production Learning Series

 

Webinars from the 2020 Learning Series – on YouTube
Process & economics for continuous purification by MCSGP enabled HPLC (peptides / oligo yield & purity) by Thomas Müller-Späth, Ph.D.
CaptureSMB; How does it work – twin-column capture LPLC technology and practical application by Thomas Müller-Späth, Ph.D.
N-Rich® – Automated process of enriching of side fraction / impurity – a unique isolating technique for QC/QA by Thomas Müller-Späth, Ph.D.
UV-based dynamic process control of twin-column LPLC system (AutomAb) by Thomas Müller-Späth, Ph.D.
Multi-functionality elements of twin-column LPLC systems; Continuous capture, BID, Sequential polish… by Wayne Nettnay
Sequential (orthogonal) polishing chromatography; a “pool-less” process & how it works by Thomas Müller-Späth, Ph.D.
Design features of GMP scale MCSGP enabled HPLC by Dr. Kathleen Mihlbachler and Matt Bui
UV-based dynamic process control of HPLC twin-column MCSGP enabled system (Mcontrol / AutoPeak) by Thomas Müller-Späth, Ph.D.
The Contichrom CUBE bench FPLC tool – features and applications for large and small molecule process development by Thomas Müller-Späth, Ph.D.
Process characterization and validation for continuous chromatography systems by Thomas Müller-Späth, Ph.D.
Virus clearance and carryover study on twin-column (continuous chromatography) system by Thomas Müller-Späth, Ph.D.
Recipes, Reports & Trending tools for TWIN / LPLC’s by Hanna Froebe
Case studies – customer data from CaptureSMB experiences of twin column system by Dr. Kathleen Mihlbachler
Novel benchtop FLPC (Contichrom® CUBE unit) ChromIQ software – unique features for design, operation and evaluation of continuous chromatography by Thomas Müller-Späth, Ph.D.
Automation of twin-column chromatography – insights on how the system controls enable users’ easy operation by Dr. Kathleen Mihlbachler
Single use interface on twin-column systems; hybrid design use in lower classification cleanrooms by Wayne Nettnay
YMC – chromatography analytical to prep scale tools – leveraging YMC technology by Gerard Gach, Jeff Kakaley & Ann Rousek

分離/純化方法開發策略-Strategy of method development for isolation/purification

生產級(Pilot or production scale)/製備型液相層析(Preparative HPLC /MPLC)與實驗室液相層析(HPLC)的分離純化(purification)原理和方法相同,但由於進樣量與層析管柱尺寸大小差異,製備級純化需考慮生產成本並有效收集目標成分(並達到要求規格,例如純度),因此分離純化策略上需與實驗室採取不同的角度來選擇分離條件。

製備級純化方法開發步驟 Steps for preparative purification

1. 分析級條件確認 Method development on the analytical scale

■ 選擇層析分離模式(膠體填料) Separation mode (packing material)

■ 分析條件確認 Separation method

2. 樣品進樣量確認 Loading study

■ 進樣濃度與體積 Concentration Load and Volume Load

■ 進樣量最佳化 Loading amount

■ 檢測條件最佳化 Detection

3. 製程純化放大 Consideration for scaling up

■ 純化放大規模選擇 Selection guide for the preparative scale

■ 管柱純化膠體之粒徑選擇 Selection of the particle size

4. 放大製備純化條件最佳化 Method optimization on the preparative scale

■ 分離條件最佳化 Separation method optimization

■ 選擇合適之分離純化收集系統 Preparative system evaluation

5. 進行樣品純化 Performing preparative separation

製備純化放大之方法說明歡迎來信索取

藉由分析級條件之研究,選擇出管柱尺寸及膠體粒徑。並進行大規模之分離條件。

製備純化放大之方法說明歡迎來信索取

Optimization of oligonucleotide separations on ion-exchange chromatography

Nucleic acid therapeutics such as antisense, siRNA and aptamers are expected to play an important role as next-generation pharmaceuticals together with antibody drugs. These drugs demand chromatographic purification and analysis that can recognize slight structural differences following synthesis.
On this page, we provide useful tips for optimization of ion-exchange chromatography methods for oligonucleotides.

Read more “Optimization of oligonucleotide separations on ion-exchange chromatography”